細胞通訊分析流程與方法:細胞通訊分析的基礎是基因表達數(shù)據(jù)和配體-受體數(shù)據(jù)庫信息,例如轉(zhuǎn)錄組數(shù)據(jù)表明A、B細胞分別表達了基因α和β,通過數(shù)據(jù)庫查詢α和β是配體-受體關系,則認為A-B通過α-β途徑進行了通訊。
輸入數(shù)據(jù)格式要求:
(1)細胞注釋文件(meta.txt,兩列,分別為細胞id和細胞類型)
(2)基因表達矩陣(counts.txt)
#下載軟件(按順序安裝)
conda?create?-n?cellphonedb2?python=3.7
conda?install?Cython
conda?install?h5py
conda?install?scikit-learn
conda?install?r
conda?install?rpy2
pip?install?https://pypi.tuna.tsinghua.edu.cn/simple?cellphonedb
pip?install?-i?https://pypi.tuna.tsinghua.edu.cn/simple?markupsafe==2.0.1
#R包
install.packages(‘ggplot2’)
install.packages(‘heatmap’)
#data1—> R
#使用RCTD注釋的空間數(shù)據(jù)進行后續(xù)分析
results?<-?myRCTD@results
results_df?<-?results$results_df
barcodes?=?rownames(results_df[results_df$spot_class?!=?“reject”?&?puck@nUMI?>=?1,])
my_table?=?puck@coords[barcodes,]
my_table$class?=?results_df[barcodes,]$first_type
meta?=?my_table?%>%?select(class) %>%?rownames_to_column(var?=?‘cell’) %>%?dplyr::rename(cell_type?=?class)
write.table(meta?,file?=?‘/xxx/Test/meta.txt’, sep?=?‘\t’, quote?=?F, row.names?=?T)
#data2—> R
expr?<-?Read10X(‘/xxx/BSTViewer_project/subdata/L13_heAuto/’,cell.column?=?1)
object?<-?CreateSeuratObject(counts?=?expr,assay?=?“Spatial”)
counts?=?object[[‘Spatial’]]@counts?%>%?as.data.frame() %>%?rownames_to_column(var?=?‘Gene’)
write.table(counts?,file?=?‘/xxx/Test/counts.txt’, sep?=?‘\t’, quote?=?F, row.names?=?T)
#鼠源基因轉(zhuǎn)化
#CellPhoneDB 只能識別人類基因,如果是鼠源基因需要進行同源基因的轉(zhuǎn)化
#下載人鼠同源基因?qū)P系
http://asia.ensembl.org/biomart/martview/b9f8cc0248e4714ba8e0484f0cbe4f02
#細胞通訊分析流程與方法參考步驟
https://www.jianshu.com/p/922a7f2c21fc
#下載的對應關系表應該有四列
Gene_stable_ID??|???Gene_name???|???Mouse_gene_stable_ID????|???Mouse_gene_name
#將對應關系(human_mouse_gene.txt)替換到 data2 矩陣—>Shell
awk?-F?‘\t’?‘BEGIN{OFS == ‘\t’}ARGIND==1{a[$4]=$1}ARGIND==2{if(FNR ==1){print}else{$1 = a[$1];print}}’?human_mouse_gene.txt?counts.txt?|?sed?‘/^ /d’?|?sed?‘1s/^/Gene\t/’?|?sed?‘s/\s/\t/g’?>?counts_new.txt
#從遠程存儲庫中列出cellphonedb可用數(shù)據(jù)庫版本:
cellphonedb?database?list_remote
#查看本地數(shù)據(jù)庫
cellphonedb?database?list_local
#下載遠程數(shù)據(jù)庫
cellphonedb?database?download?–version?<version_spec|latest>
#運行cellphonedb —> Shell
cellphonedb?method?statistical_analysis?–output-path?test_output?meta.txt?counts_new.txt
#輸出文件
deconvoluted.txt????|???pvalues.txt?|???significant_means.txt
test.count_network.txt??|???means.txt???|???test.interaction_count.txt
#氣泡圖—> Shell
cellphonedb?plot?dot_plot?–pvalues-path?test_output/pvalues.txt?–means-path?test_output/means.txt?–output-path?test_output??–output-name?test.dotplot.pdf
#僅繪制自己關注的細胞和互作—> Shell
cellphonedb?plot?dot_plot?–pvalues-path?test_output/pvalues.txt?–means-path?test_output/means.txt?–output-path?test_output??–output-name?test.dotplot2.pdf?–rows?test_output/row.txt?–columns?test_output/col.txt
注:橫坐標是細胞類型互作,縱坐標是蛋白互作,點越大表示 p 值越小,顏色代表平均表達量
#熱圖—> Shell
cellphonedb?plot?heatmap_plot?–pvalues-path?test_output/pvalues.txt?–output-path?test_output?–pvalue?0.05?–count-name?test.heatmap_count.pdf?–log-name?test.heatmap_log_count.pdf?–count-network-name?test.count_network.txt?–interaction-count-name?test.interaction_count.txt?meta.txt
注:橫縱坐標表示細胞類型,顏色深藍色到紫紅色代表互作數(shù)由低到高
#細胞通訊分析流程與方法:細胞類型網(wǎng)絡圖—> R
#這里借用另一款細胞通訊分析軟件——CellChat(https://github.com/sqjin/CellChat)的繪圖方法
#加載R包
library(igraph)
library(tidyr)
library(stats)
library(reshape2)
library(Matrix)
library(grDevices)
library(ggplot2)
#使用CellChat作者提供的繪制互作網(wǎng)絡圖的function
scPalette?<-?function(n) {
colorSpace?<-?c(‘#E41A1C’,’#377EB8′,’#4DAF4A’,’#984EA3′,’#F29403′,’#F781BF’,’#BC9DCC’,’#A65628′,’#54B0E4′,’#222F75′,’#1B9E77′,’#B2DF8A’,
‘#E3BE00′,’#FB9A99′,’#E7298A’,’#910241′,’#00CDD1′,’#A6CEE3′,’#CE1261′,’#5E4FA2′,’#8CA77B’,’#00441B’,’#DEDC00′,’#B3DE69′,’#8DD3C7′,’#999999′)
if?(n?<=?length(colorSpace)) {
colors?<-?colorSpace[1:n]
} else?{
colors?<-?grDevices::colorRampPalette(colorSpace)(n)
}
return(colors)
}
netVisual_circle?<-function(net, color.use?=?NULL,title.name?=?NULL, sources.use?=?NULL, targets.use?=?NULL, idents.use?=?NULL, remove.isolate?=?FALSE, top?=?1,
weight.scale?=?FALSE, vertex.weight?=?20, vertex.weight.max?=?NULL, vertex.size.max?=?NULL, vertex.label.cex=1,vertex.label.color=?“black”,
edge.weight.max?=?NULL, edge.width.max=8, alpha.edge?=?0.6, label.edge?=?FALSE,edge.label.color=’black’,edge.label.cex=0.8,
edge.curved=0.2,shape=’circle’,layout=in_circle(), margin=0.2, vertex.size?=?NULL,
arrow.width=1,arrow.size?=?0.2){
if?(!is.null(vertex.size)) {
warning(“‘vertex.size’ is deprecated. Use `vertex.weight`”)
}
if?(is.null(vertex.size.max)) {
if?(length(unique(vertex.weight)) ==?1) {
vertex.size.max?<-?5
} else?{
vertex.size.max?<-?15
}
}
options(warn?=?-1)
thresh?<-?stats::quantile(net, probs?=?1-top)
net[net?<?thresh] <-?0
if?((!is.null(sources.use)) |?(!is.null(targets.use)) |?(!is.null(idents.use)) ) {
if?(is.null(rownames(net))) {
stop(“The input weighted matrix should have rownames!”)
}
cells.level?<-?rownames(net)
df.net?<-?reshape2::melt(net, value.name?=?“value”)
colnames(df.net)[1:2] <-?c(“source”,”target”)
# keep the interactions associated with sources and targets of interest
if?(!is.null(sources.use)){
if?(is.numeric(sources.use)) {
sources.use?<-?cells.level[sources.use]
}
df.net?<-?subset(df.net, source?%in%?sources.use)
}
if?(!is.null(targets.use)){
if?(is.numeric(targets.use)) {
targets.use?<-?cells.level[targets.use]
}
df.net?<-?subset(df.net, target?%in%?targets.use)
}
if?(!is.null(idents.use)) {
if?(is.numeric(idents.use)) {
idents.use?<-?cells.level[idents.use]
}
df.net?<-?filter(df.net, (source?%in%?idents.use) |?(target?%in%?idents.use))
}
df.net$source?<-?factor(df.net$source, levels?=?cells.level)
df.net$target?<-?factor(df.net$target, levels?=?cells.level)
df.net$value[is.na(df.net$value)] <-?0
net?<-?tapply(df.net[[“value”]], list(df.net[[“source”]], df.net[[“target”]]), sum)
}
net[is.na(net)] <-?0
if?(remove.isolate) {
idx1?<-?which(Matrix::rowSums(net) ==?0)
idx2?<-?which(Matrix::colSums(net) ==?0)
idx?<-?intersect(idx1, idx2)
net?<-?net[-idx, ]
net?<-?net[, -idx]
}
g?<-?graph_from_adjacency_matrix(net, mode?=?“directed”, weighted?=?T)
edge.start?<-?igraph::ends(g, es=igraph::E(g), names=FALSE)
coords<-layout_(g,layout)
if(nrow(coords)!=1){
coords_scale=scale(coords)
}else{
coords_scale<-coords
}
if?(is.null(color.use)) {
color.use?=?scPalette(length(igraph::V(g)))
}
if?(is.null(vertex.weight.max)) {
vertex.weight.max?<-?max(vertex.weight)
}
vertex.weight?<-?vertex.weight/vertex.weight.max*vertex.size.max+5
loop.angle<-ifelse(coords_scale[igraph::V(g),1]>0,-atan(coords_scale[igraph::V(g),2]/coords_scale[igraph::V(g),1]),pi-atan(coords_scale[igraph::V(g),2]/coords_scale[igraph::V(g),1]))
igraph::V(g)$size<-vertex.weight
igraph::V(g)$color<-color.use[igraph::V(g)]
igraph::V(g)$frame.color?<-?color.use[igraph::V(g)]
igraph::V(g)$label.color?<-?vertex.label.color
igraph::V(g)$label.cex<-vertex.label.cex
if(label.edge){
igraph::E(g)$label<-igraph::E(g)$weight
igraph::E(g)$label?<-?round(igraph::E(g)$label, digits?=?1)
}
if?(is.null(edge.weight.max)) {
edge.weight.max?<-?max(igraph::E(g)$weight)
}
if?(weight.scale?==?TRUE) {
#E(g)$width<-0.3+edge.width.max/(max(E(g)$weight)-min(E(g)$weight))*(E(g)$weight-min(E(g)$weight))
igraph::E(g)$width<-?0.3+igraph::E(g)$weight/edge.weight.max*edge.width.max
}else{
igraph::E(g)$width<-0.3+edge.width.max*igraph::E(g)$weight
}
igraph::E(g)$arrow.width<-arrow.width
igraph::E(g)$arrow.size<-arrow.size
igraph::E(g)$label.color<-edge.label.color
igraph::E(g)$label.cex<-edge.label.cex
igraph::E(g)$color<-?grDevices::adjustcolor(igraph::V(g)$color[edge.start[,1]],alpha.edge)
if(sum(edge.start[,2]==edge.start[,1])!=0){
igraph::E(g)$loop.angle[which(edge.start[,2]==edge.start[,1])]<-loop.angle[edge.start[which(edge.start[,2]==edge.start[,1]),1]]
}
radian.rescale?<-?function(x, start=0, direction=1) {
c.rotate?<-?function(x) (x?+?start) %%?(2?*?pi) *?direction
c.rotate(scales::rescale(x, c(0, 2?*?pi), range(x)))
}
label.locs?<-?radian.rescale(x=1:length(igraph::V(g)), direction=-1, start=0)
label.dist?<-?vertex.weight/max(vertex.weight)+2
plot(g,edge.curved=edge.curved,vertex.shape=shape,layout=coords_scale,margin=margin, vertex.label.dist=label.dist,
vertex.label.degree=label.locs, vertex.label.family=”Helvetica”, edge.label.family=”Helvetica”) # “sans”
if?(!is.null(title.name)) {
text(0,1.5,title.name, cex?=?1.1)
}
# https://www.andrewheiss.com/blog/2016/12/08/save-base-graphics-as-pseudo-objects-in-r/
# grid.echo()
# gg <- ?grid.grab()
gg?<-?recordPlot()
return(gg)
}
#整體互作網(wǎng)絡圖繪制
#讀取cellphonedb的分析數(shù)據(jù)
count_net?<-?read.delim(“/xxx/test_output/test.count_network.txt”, check.names?=?FALSE)
#數(shù)據(jù)格式處理
count_inter?<-?count_net
count_inter$count?<-?count_inter$count/100
count_inter?<-?spread(count_inter, TARGET, count)
rownames(count_inter) <-?count_inter$SOURCE
count_inter?<-?count_inter[, -1]
count_inter?<-?as.matrix(count_inter)
#繪圖
netVisual_circle(count_inter,weight.scale?=?T)
#細胞通訊分析流程與方法:每種細胞與其他細胞的互作
par(mfrow?=?c(1,3), xpd=TRUE)
for?(i?in?1:nrow(count_inter)) {
mat2?<-?matrix(0, nrow?=?nrow(count_inter), ncol?=?ncol(count_inter), dimnames?=?dimnames(count_inter))
mat2[i, ] <-?count_inter[i, ]
netVisual_circle(mat2,
weight.scale?=?T,
edge.weight.max?=?max(count_inter),
title.name?=?rownames(count_inter)[i],
arrow.size=0.2)
}