三年成全在线观看大全,中文字幕av一区二区,免费看的黄色视频,中文字幕无码在线
 分類: 時(shí)空組學(xué)

今天給大家介紹的是BMKMANU S1000空間轉(zhuǎn)錄組數(shù)據(jù)與單細(xì)胞轉(zhuǎn)錄組數(shù)據(jù)的關(guān)聯(lián)分析。在我們的關(guān)聯(lián)分析中可以使用不同分辨率的空間數(shù)據(jù)分別與單細(xì)胞數(shù)據(jù)進(jìn)行關(guān)聯(lián)分析,本期我們使用RCTD進(jìn)行關(guān)聯(lián)分析。詳細(xì)分析流程如下所示:

RCTD

使用監(jiān)督學(xué)習(xí)的方法,利用帶注釋的scRNA-seq數(shù)據(jù)來(lái)定義空間轉(zhuǎn)錄組學(xué)數(shù)據(jù)中預(yù)期存在的細(xì)胞類型的細(xì)胞特異性情況。

1、單細(xì)胞數(shù)據(jù)格式要求

(1)data 1 細(xì)胞注釋結(jié)果(cellType)

(2)data 2 基因表達(dá)矩陣(sc_counts)

2、空間數(shù)據(jù)格式要求

(1)data 1 空間spots位置信息(coords)

(2)data 2 基因表達(dá)矩陣(sp_counts)

#安裝spacexr包

# install.packages(“devtools”)

devtools::install_github(“dmcable/spacexr”, build_vignettes?=?FALSE)

 

#加載R包

library(Seurat)

library(tidyverse)

library(Matrix)

library(spacexr)

library(ggplot2)

library(ggpubr)

library(gridExtra)

library(reshape2)

library(readr)

library(Seurat)

library(config)

library(ggpubr)

library(gridExtra)

library(reshape2)

library(png)

library(patchwork)

library(SingleR)

library(celldex)

 

#矩陣轉(zhuǎn)化

Rcpp::sourceCpp(code=’

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

IntegerMatrix asMatrix(NumericVector rp,

NumericVector cp,

NumericVector z,

int nrows,

int ncols){

int k = z.size() ;

IntegerMatrix ?mat(nrows, ncols);

for (int i = 0; i < k; i++){

mat(rp[i],cp[i]) = z[i];

}

return mat;

}

‘?)

as_matrix?<-?function(mat){

row_pos?<-?mat@i

col_pos?<-?findInterval(seq(mat@x)-1,mat@p[-1])

tmp?<-?asMatrix(rp?=?row_pos, cp?=?col_pos, z?=?mat@x,

nrows?=??mat@Dim[1], ncols?=?mat@Dim[2])

row.names(tmp) <-?mat@Dimnames[[1]]

colnames(tmp) <-?mat@Dimnames[[2]]

return(tmp)

}

 

#讀取單細(xì)胞數(shù)據(jù)

expr?<-?Read10X(‘/xxx/04.QC/filtered_feature_bc_matrix/’, cell.column?=?1)

sc_data?<-?CreateSeuratObject(counts?=?expr,assay?=?“RNA”,min.cells=5,min.features=100)

#counts & nUMI

sc_counts?<-?as_matrix(sc_data[[‘RNA’]]@counts)

sc_nUMI?=?colSums(sc_counts)

#注釋

##方法一:SingleR 注釋

load(‘/share/nas1/guochao/database/celldex/MouseRNAseqData.Rdata’)

mouseRNA?<-?ref

sce_for_SingleR<-GetAssayData(sc_data,slot=”data”)

pred.mouseRNA?<-?SingleR(test=sce_for_SingleR,ref=mouseRNA,labels=mouseRNA$label.fine,assay.type.test=”logcounts”,assay.type.ref?=”logcounts”)

pred.mouseRNA$labels<-as.factor(pred.mouseRNA$labels)

cellType=data.frame(barcode=sc_data@assays$RNA@counts@Dimnames[2], celltype=pred.mouseRNA$labels)

names(cellType) =?c(‘barcode’, ‘cell_type’)

cell_types?=?cellType$cell_type; names(cell_types) <-?cellType$barcode?# create cell_types named list

cell_types?=?as.factor(cell_types) # convert to factor data type

##方法二:手動(dòng)注釋

sc_data?=?NormalizeData(sc_data, normalization.method?=?‘LogNormalize’, scale.factor?=?10000)

sc_data?=?FindVariableFeatures(sc_data, selection.method?=?‘vst’, nfeatures?=?2000)

sc_data?=?ScaleData(sc_data)

sc_data?=?RunPCA(sc_data, features?=?VariableFeatures(object?=?sc_data))

sc_data?=?FindNeighbors(sc_data, dims?=?1:15)

sc_data?=?FindClusters(sc_data, resolution?=?0.25)

markers?=?FindAllMarkers(sc_data, only.pos?=?TRUE, min.pct?=?0.25, logfc.threshold?=?0.25)

top10?=?markers?%>%?group_by(cluster) %>%?top_n(n?=?5, wt?=?avg_log2FC)

my_df?=?sc_data@meta.data?%>%?as.data.frame() %>%

select(seurat_clusters) %>%

rownames_to_column(var?=?‘barcode’) %>%

rename(cluster?=?seurat_clusters)

cellType?=?my_df?%>%?mutate(cell_type?=?case_when( cluster?==?‘0’?~?‘Allantois cell’,

cluster?==?‘1’?~?‘Bergmann glial cell’,

cluster?==?‘2’?~?‘Neuroblast’,

cluster?==?‘3’?~?‘Neuroendocrine cell’,

cluster?==?‘4’?~?‘Fibroblast’,

cluster?==?‘5’?~?‘Type I spiral ganglion neuron’,

cluster?==?‘6’?~?‘Erythroid cell’,

cluster?==?‘7’?~?‘Type II spiral ganglion neuron’,

cluster?==?‘8’?~?‘Epithelial cell’,

cluster?==?‘9’?~?‘Cardiac progenitor cell’,

cluster?==?’10’?~?‘Oligodendrocyte precursor cell’,

cluster?==?’11’?~?‘Endothelial cell’,

cluster?==?’12’?~?‘Megakaryocyte’,

cluster?==?’13’?~?‘Hepatocyte’,

cluster?==?’14’?~?‘Ventricular cardiomyocyte’))

cell_types?=?cellType$cell_type; names(cell_types) <-?cellType$barcode?# create cell_types named list

cell_types?=?as.factor(cell_types) # convert to factor data type

#構(gòu)建參考集

reference?=?Reference(sc_counts, cell_types, sc_nUMI)

 

#讀取空間數(shù)據(jù),這里選擇的是level 13的數(shù)據(jù)

#位置信息

coords?=?read.table(gzfile(‘/xxx/05.AllheStat/BSTViewer_project/subdata/L13_heAuto/barcodes_pos.tsv.gz’), ???header?=?F) %>%?dplyr::rename(barcodes?=?V1, xcoord?=?V2, ycoord?=?V3)

rownames(coords) <-?coords$barcodes; coords$barcodes?<-?NULL

#表達(dá)量矩陣

expr?<-?Read10X(‘/xxx/05.AllheStat/BSTViewer_project/subdata/L13_heAuto/’, cell.column?=?1)

sp_data?<-?CreateSeuratObject(counts?=?expr,assay?=?“Spatial”)

sp_counts?<-?as_matrix(sp_data[[‘Spatial’]]@counts)

#nUMI

sp_nUMI?<-?colSums(sp_counts)

#構(gòu)建空間實(shí)驗(yàn)集

puck?<-?SpatialRNA(coords, sp_counts, sp_nUMI)

 

#聯(lián)合分析

myRCTD?<-?create.RCTD(puck, reference, max_cores?=?8)

myRCTD?<-?run.RCTD(myRCTD, doublet_mode?=?‘doublet’) #run.RCTD

 

#查找marker基因

get_marker_data?<-?function(cell_type_names, cell_type_means, gene_list) {

marker_means?=?cell_type_means[gene_list,]

marker_norm?=?marker_means?/?rowSums(marker_means)

marker_data?=?as.data.frame(cell_type_names[max.col(marker_means)])

marker_data$max_epr?<-?apply(cell_type_means[gene_list,],1,max)

colnames(marker_data) =?c(“cell_type”,’max_epr’)

rownames(marker_data) =?gene_list

marker_data$log_fc?<-?0

epsilon?<-?1e-9

for(cell_type?in?unique(marker_data$cell_type)) {

cur_genes?<-?gene_list[marker_data$cell_type?==?cell_type]

other_mean?=?rowMeans(cell_type_means[cur_genes,cell_type_names?!=?cell_type])

marker_data$log_fc[marker_data$cell_type?==?cell_type] <-?log(epsilon?+?cell_type_means[cur_genes,cell_type]) –?log(epsilon?+?other_mean)

}

return(marker_data)

}

cell_type_info_restr?=?myRCTD@cell_type_info$info

de_genes?<-?get_de_genes(cell_type_info_restr, puck, fc_thresh?=?3, expr_thresh?=?.0001, MIN_OBS?=?3)

marker_data_de?=?get_marker_data(cell_type_info_restr[[2]], cell_type_info_restr[[1]], de_genes)

saveRDS(marker_data_de,’/share/nas1/guochao/Test/221107marker_data_de_standard.RDS’)

write.table(marker_data_de, file?=?‘/share/nas1/guochao/Test/221107marker_data_de_standard.tsv’, sep?=?‘\t’,quote?=?F, row.names?=?T)

 

#構(gòu)建繪圖數(shù)據(jù)

results?<-?myRCTD@results

results_df?<-?results$results_df

barcodes?=?rownames(results_df[results_df$spot_class?!=?“reject”?&?puck@nUMI?>=?1,])

my_table?=?puck@coords[barcodes,]

my_table$class?=?results_df[barcodes,]$first_type

 

#繪圖

cal_zoom_rate?<-?function(width, height){

std_width?=?1000

std_height?=?std_width?/?(46?*?31) *?(46?*?36?*?sqrt(3) /?2.0)

if?(std_width?/?std_height?>?width?/?height){

scale?=?width?/?std_width

}

else{

scale?=?height?/?std_height

}

return(scale)

}

png?<-?readPNG(‘/share/nas1/dengdj/testing/Barcode_YF/20220923-YF-N1295-1-2/analysis/XSPT-T/05.AllheStat/allhe/he_roi_small.png’)

zoom_scale?=?cal_zoom_rate(dim(png)[2], dim(png)[1])

my_table?=?my_table?%>%?mutate(across(c(x,y), ~.x*zoom_scale))

col?=?c(“#F56867″,”#FEB915″,”#C798EE”,”#59BE86″,”#7495D3″,”#D1D1D1″,”#6D1A9C”,”#15821E”,”#3A84E6″,”#997273″,”#787878″,”#DB4C6C”,”#9E7A7A”,”#554236″,”#AF5F3C”,”#93796C”,”#F9BD3F”,”#DAB370″)

p?=?ggplot(my_table, aes(x?=?x, y?=?dim(png)[1] –?y))+

background_image(png)+

geom_point(shape?=?16, size?=?1.8, aes(color?=?class))+

coord_cartesian(xlim?=?c(0, dim(png)[2]), y?=?c(0, dim(png)[1]), expand?=?FALSE)+

scale_color_manual(values?=?col)+

theme(axis.title.x=element_blank(),axis.text.x=element_blank(),axis.ticks.x=element_blank(), axis.title.y=element_blank(),axis.text.y=element_blank(),axis.ticks.y=element_blank())+

guides(color?=?guide_legend(override.aes?=?list(size?=?2.5, alphe?=?0.1)))

ggsave(p, file?=?‘/share/nas1/guochao/Test/temp/221107_all.png’, width=10, height=7, dpi?=?300)

ggsave(p, file?=?‘/share/nas1/guochao/Test/temp/221107_all.pdf’, width=10, height=7)

 

 

最近文章